PHOTODIFLUORAMINATION OF CF3C¹⁵N: EVIDENCE FOR INTERMEDIATE FORMATION OF AN ALKYLFLUORODIAZENE

John C. Wozny and Carl L. Bumgardner

Contribution from the Department of Chemistry North Carolina State University, Raleigh, North Carolina 27607

(Received in USA 16 November 1972; received in UK for publication 23 July 1973)

Irradiation at 253.7 nm of alkenes,¹ azo compounds,² and alkynes^{3,4} with tetrafluorohydrazine in the gas phase leads to the addition of the elements of NF₃ across the unsaturated linkage.

In the case of alkynes, the intermediate adduct rearranges to give the isomeric N-fluorimine. However, when nitriles are irradiated with N_2F_4 , apparent perfluorination of the nitrile group takes place.^{5,6,7}

$$R - C \equiv N \xrightarrow{N_2 F_4} R - C F_2 - N F_2$$

(R = C F_3, CN)

From the reaction of CF_3CN and N_2F_4 , Glemser⁵ reported the formation of $C_2F_5NF_2$. No other C-containing products were mentioned and several perfluorination mechanisms were suggested to account for this lone product. Dresdner⁶ observed that irradiation of N_2F_4 and $(CN)_2$ gave F_2NCF_2CN , $(F_2NCF_2)_2$, $C_2F_5NF_2$, and CF_4 . The first two products represent perfluorination of nitrile groups. Although the results were contrasted to those obtained using other fluorinating The significant amounts of CF_3NF_2 , C_2F_6 , and excess N_2 can be explained by the several terminating steps:

F-

$$CF_{3}-CF_{2}^{15}N=N-F \longrightarrow C_{2}F_{6} + {}^{15}N\equiv N$$

$$CF_{3}-C_{-}^{15}N \longrightarrow FC^{15}N + CF_{3}$$

$$CF_{3} + NF_{2} \longrightarrow CF_{3}NF_{2}$$

$$FC^{15}N + F \longrightarrow F-C_{-}^{-15}N$$

$$F^{-15}N + NF_{2} \longrightarrow F-C_{-}^{15}N-NF_{2} \longrightarrow CF_{3}^{-15}N=N-F$$

$$CF_{3}-{}^{15}N=N-F \longrightarrow CF_{3} + {}^{15}N\equiv N + F$$

$$CF_{3} + NF_{2} \longrightarrow CF_{3}NF_{2}$$

Decomposition of R_{f}^{-15} N=N-F, the fluorine analog of an alkyl diazene,¹⁰ provides a simple route to $CF_3CF_2NF_2$, C_2F_6 , and N_2 correctly labeled.

Although dimerization of perfluoromethyl radicals could furnish C_2F_6 , the probability of F_3C collision with NF_2 and N_2F_4 is far greater than the probability of an encounter with another F_3C . Likewise, neither C_3F_8 nor C_4F_{10} was observed from theoretically possible radical coupling combinations of the proposed perfluoroalkyl intermediates. The absence of $NF_3(F + NF_2 \rightarrow NF_3)$ may be ascribed to the fact that CF_3CN is in much higher concentration than NF_2 , and to the high reactivity of atomic F. On the other hand, NF, in analogy with O_2 , is likely to be in its ground triplet state¹¹ and will tend to be scavenged by the most abundant radical species in the mixture; i.e., by NF_2 .

Clearly ruled out by the results is any process requiring direct fluorination of the nitrile group.

$$R_f C^{15} N \xrightarrow{[F]} R_f CF_2^{15} NF_2$$

Since no 15 N-labeled N₂F₂ was observed, generation of R_f · via the addition-elimination also

$$\frac{R_f}{C_F} \frac{15}{R_F} \frac{15}{F} R_f + F^{-15} N = N - F$$

may be dismissed.

Hydrocarbon nitriles are presently under investigation.

agents (F_2 , Co F_3 , and Ag F_2), the mechanism of perfluorination was not discussed.

We wish to report now a mass balance for the photo-initiated reaction of N_2F_4 with CF_3CN and the fate of the nitrogen atom in $CF_2C^{15}N$.

Irradiation with a high pressure mercury lamp equipped with a Vycor filter of CF_3CN (145 torr) and N_2F_4 (223 torr) in a 990 ml-reactor for one hour resulted in 78% conversion of the CF_3CN (i.e., 22% of the CF_3CN recovered unchanged) and the formation of difluoraminopentafluoroethane, difluoraminotrifluoromethane, hexafluoroethane, difluorodiazene, and molecular nitrogen in proportions approximated by the following equation.

$$7N_2F_4 + 6CF_3CN \xrightarrow{nv} 4Et_fNF_2 + 2Me_fNF_2 + C_2F_6 + N_2F_2 + 6N_2$$

1....

The products were identified by infrared, mass, and ¹⁹F NMR spectroscopy. Quantities were determined by gas chromatography at 0° using a Aerograph Autoprep model A-700 equipped with a 30' QF1 column⁸ and by quantitative mass spectroscopy.

When nitrogen-15 labeled trifluoroacetonitrile⁹ was used as the starting material the label was found by mass spectroscopy to be exclusively in molecular nitrogen as ${}^{14}N^{15}N$. There was no notable reaction between N_2F_4 and CF_3CN either upon standing together for two hours at room temperature, or upon irradiation through a Pyrex filter for one hour. Furthermore, CF_2CN exhibited no change after irradiation through a Vycor filter for one hour.

These results can be accommodated readily by a mechanism analogous to that described for photodifluoramination of substrates containing a carbon-carbon triple bond.^{3,4} The initiation steps:

$$N_2F_4 = 2NF_2$$

$$NF_2 \xrightarrow{h\nu} NF + F$$

$$NF_2 + NF \longrightarrow N_2F_2 + F$$

are followed by a short chain reaction:

$$CF_{3}C^{15}N + F \longrightarrow CF_{3}-C^{-15}N$$

$$CF_{3}-C^{-15}N + NF_{2} \longrightarrow CF_{3}-C^{-15}N-NF_{2}$$

$$CF_{3}-C^{-15}N-NF_{2} \longrightarrow CF_{3}-CF_{2}-^{15}N=N-F$$

$$CF_{3}-CF_{2}-^{15}N=N-F \longrightarrow C_{2}F_{5} + ^{15}N\equiv N + F$$

$$C_{2}F_{5} + NF_{2} \longrightarrow C_{2}F_{5}NF_{2}$$

REFERENCES AND FOOTNOTES

- C. L. Bumgardner, E. L. Lawton, K. G. McDaniel, and H. Carmichael, J. Amer. Chem. Soc., 92, 1311 (1970).
- 2. G. N. Sausen, J. Org. Chem., 33, 2336 (1968).
- C. L. Bumgardner and G. Crowther, Abstracts of Papers, 158th National Meeting of the American Chemical Society, New York, Sept., 1969.
- 4. C. L. Bumgardner, Tetrahedron Lett., 3683 (1964).
- 5. V. Biermann, O. Glemser, and J. Knaak, Chem. Ber., 100, 3789 (1967).
- 6. R. D. Dresdner, J. Merritt, and J. P. Royal, Inorg. Chem., 4 (8), 1228 (1965).
- 7. In one case, however, L. M. Zaborowski and J. M. Shreeve, *Inorg. Chem.*, 10 (2), 407 (1971) reported that irradiation of N₂F₄ with trichloroacetonitrile formed only CC1₃NF₂ and NF₂CC1₂CN.
- 8. Presence of N_2F_2 was confirmed by infrared and mass spectroscopy only. N_2F_2 was not identified in the gas chromatogram.
- 9. CF₃C¹⁵N was synthesized from ethyltrifluoroacetate (Pierce Chemical Co.) by adaptation of the H. Gilman and R. G. Jones, J. Amer. Chem. Soc., 65, 1458 (1943) procedure using ¹⁵N-ammonia</sup> (Stohler Isotope Chemicals, Inc. 95%).
- 10. For discussion of alkyldiazenes, RN₂H, see E. M. Kosower, Accounts Chem. Res., 4, 193 (1971)
 Difluorodiazene, FN₂F, the fluorine analog of diazene HN₂H, is known. R. Ettinger,
 F. A. Johnson, and C. B. Colburn, J. Chem. Phys., 34, 2187 (1961).
- 11. A. H. Curran, R. G. MacDonald, A. S. Stone, and B. A. Thrush, Chem. Phys. Letters, 8, 451 (1971).

ACKNOWLEDGEMENT. We are grateful to the National Science Foundation for generous support.